Lịch sử Đại số

Lịch sử ban đầu của đại số

Một trang trong tác phẩm al-Kitāb al-muḫtaṣar fī ḥisāb al-ğabr wa-l-muqābala của Al-Khwārizmī

Cội nguồn của đại số có nguồn gốc từ người Babylon cổ đại,[8] vốn đã phát triển một hệ thống số học tiên tiến mà họ đã có thể làm các phép tính theo phong cách thuật toán. NgườiBabylon đã phát triển các công thức để tính toán các lời giải cho các bài toán mà ngày nay thường được giải quyết bằng cách sử dụng phương trình tuyến tính, phương trình bậc hai, và phương trình tuyến tính không xác định. Ngược lại, hầu hết người Ai Cập của thời đại này, cũng như các nhà toán học Hy LạpTrung Quốc trong thiên niên kỷ 1 TCN, thường giải các phương trình như vậy bằng phương pháp hình học, chẳng hạn như những mô tả trong sách toán viết trên giấy lau sậy Rhind, Cơ sở của Euclid và Cửu chương toán thuật. Lời giải bằng hình học của người Hy Lạp, tiêu biểu trong cuốn Cơ sở, cung cấp một khuôn khổ cho việc khái quát công thức không chỉ dành cho lời giải của các bài toán cụ thể mà còn đưa chúng vào một hệ thống chung hơn để mô tả và giải phương trình, mặc dù điều này sẽ không được thực hiện cho đến khi toán học phát triển trong Hồi giáo thời kỳ Trung Cổ.[9]

Đến thời của Plato, toán học Hy Lạp đã trải qua một sự thay đổi mạnh mẽ. Người Hy Lạp cổ đại tạo ra một dạng đại số hình học, trong đó các từ ngữ được đại diện bằng các bên của các đối tượng hình học, thường là các dòng kẻ với các chữ cái liên kết ở bên cạnh.[6] Diophantus (thế kỷ 3) là một nhà toán học Hy Lạp ở Alexandria và là tác giả của một loạt các cuốn sách có tên Arithmetica. Những cuốn sách này tập trung vào việc giải quyết phương trình đại số,[10] và đã đưa lý thuyết số đến với phương trình Diophantos.

Các phương pháp đại số hình học đã thảo luận ở trên có ảnh hưởng trực tiếp đến nhà toán học người Ba Tư Muhammad ibn Mūsā al-Khwārizmī (khoảng 780 – 850). Ông sau đó đã viết cuốn sách Cách tính toán dựa trên khôi phục và cân bằng. Cuốn sách này đã chính thức đưa đại số thành một phân nhánh độc lập của toán học, tách rời đại số khỏi hình họcsố học.[11]

Các nhà toán học thời Hellenistic Hero của AlexandriaDiophantus[12] cũng như các nhà toán học Ấn Độ như Brahmagupta tiếp tục truyền thống của Ai Cập và Babylon, mặc dù tác phẩm của Arithmetica của Diophantus và tác phẩm Brāhmasphuṭasiddhānta của Brahmagupta ở đẳng cấp cao hơn.[13] Ví dụ, giải pháp số học đầy đủ đầu tiên (bao gồm cả các nghiệm là số không và số âm) của phương trình bậc hai được Brahmagupta mô tả trong cuốn sách Brahmasphutasiddhanta. Sau đó, các nhà toán học Ba Tư và Ả Rập phát triển phương pháp đại số ở một mức độ tinh tế cao hơn nhiều. Mặc dù Diophantus và người Babylon sử dụng phương pháp tại chỗ đặc biệt để giải quyết các phương trình, đóng góp của Al-Khwarizmi là cơ bản. Ông đã giải quyết phương trình tuyến tính và phương trình bậc hai mà không dùng biểu tượng đại số, số âm hoặc số không, do đó ông đã phải tách biệt phương trình bậc hai tổng quát thành một số loại phương trình khác nhau.[14]

Trong bối cảnh đại số được xác định với các lý thuyết của phương trình, nhà toán học người Hy Lạp Diophantus được biết đến như là "cha đẻ của đại số" nhưng trong thời gian gần đây có nhiều cuộc tranh luận về việc liệu al-Khwarizmi, người sáng lập ra phép biến đổi al-jabr (khôi phục), xứng đáng hơn với danh hiệu trên.[15] Những người ủng hộ Diophantus chỉ ra thực tế là các phép biến đổi đại số trong Al-Jabr có phần sơ cấp hơn khi so sánh với các phép biến đổi đại số trong Arithmetica và Arithmetica ngắn gọn hơn trong khi Al-Jabr hoàn toàn dùng ngôn ngữ thường.[16] Những người ủng hộ Al-Khwarizmi chỉ ra thực tế là ông đã giới thiệu phương pháp "giảm" và "cân bằng" (bỏ đi hoặc trừ đi cả hai vế của phương trình cho cùng một số), từ đó có thuật ngữ al-jabr,[17] và ông đã giải thích đầy đủ về cách giải phương trình bậc hai,[18] kèm theo là các chứng minh bằng hình học, trong khi coi đại số là một ngành độc lập của riêng nó.[19] Đại số của ông cũng đã không còn liên quan "với một loạt các bài toán cần được giải quyết, mà đã trở thành một cuộc triển lãm bắt đầu với các khái niệm nguyên thủy, trong đó các trường hợp đưa ra phải bao gồm tất cả khả năng có thể cho phương trình, điều này đã chỉ rõ đối tượng thực sự của việc nghiên cứu". Ông cũng nghiên cứu phương trình không phụ thuộc vào bài toán và "một cách chung chung, phương trình không chỉ đơn giản là xuất hiện trong quá trình giải quyết một bài toán, nhưng nó được tạo ra để giải quyết vô số bài toán cùng loại".[20]

Một nhà toán học người Ba Tư khác là Omar Khayyám đã được ghi công với việc xác định các nền tảng của hình học đại số và tìm thấy cách giải bằng phương pháp hình học tổng quát của phương trình bậc ba. Tuy nhiên, một nhà toán học người Ba Tư khác tên Sharaf al-Dīn al-Tusi, tìm thấy cách giải đại số và số học cho hàng loạt trường hợp khác nhau của phương trình bậc ba.[21] Ông cũng phát triển các khái niệm về hàm số.[22] Các nhà toán học Ấn Độ Mahavira và Bhaskara II, nhà toán học Ba Tư Al-Karaji,[23] và nhà toán học Trung Quốc Chu Thế Kiệt giải quyết một số phương trình bậc ba, bốn, năm và bậc cao hơn sử dụng các phương pháp số. Trong thế kỷ 13, cách giải một phương trình bậc ba của Fibonacci là đại diện cho khởi đầu của hồi sinh trong nghiên cứu đại số ở châu Âu. Khi thế giới Hồi giáo dần suy tàn, thế giới châu Âu dần phát triển. Và từ đó đại số đã phát triển hơn nữa.

Lịch sử đại số hiện đại

Nhà toán học người Ý Girolamo Cardano đã công bố lời giải phương trình bậc 3 và bậc 4 vào năm 1545 trong cuốn sách Ars magna của ông.

François Viète là người đã có những nghiên cứu mới về đại số vào cuối thế kỷ 16. Năm 1637, René Descartes xuất bản cuốn La Géométrie, phát kiến ra hình học giải tích và giới thiệu ký hiệu đại số hiện đại. Các sự kiện quan trọng đánh dấu sự phát triển của đại số là giải pháp đại số chung của phương trình bậc ba và bậc bốn, được phát triển vào giữa thế kỷ 16. Ý tưởng về định thức được nhà toán học Nhật Seki Kōwa phát triển vào thế kỷ 17, cùng với nghiên cứu độc lập của Gottfried Leibniz 10 năm sau đó nhằm giải quyết hệ phương trình tuyến tính sử dụng ma trận. Gabriel Cramer cũng đã nghiên cứu về ma trận và định thức trong thế kỷ 18. Hoán vị được Joseph-Louis Lagrange phân tích trong luận văn năm 1770 Réflexions sur la résolution algébrique des équations, tập trung vào các lời giải của phương trình đại số, trong đó ông giới thiệu đa thức giảm bậc Lagrange. Paolo Ruffini là người đầu tiên phát triển các lý thuyết về nhóm hoán vị, và cũng như những người đi trước, tập trung vào việc giải phương trình đại số.

Đại số trừu tượng đã được phát triển trong thế kỷ 19, xuất phát từ sự quan tâm tới việc giải quyết các phương trình, ban đầu tập trung vào những gì bây giờ được gọi là lý thuyết Galois, và về các vấn đề số có khả năng xây dựng.[24] George Peacock là người sáng lập tư duy tiên đề trong số học và đại số. Augustus De Morgan phát kiến ra đại số quan hệ trong cuốn sách Syllabus of a Proposed System of Logic. Josiah Willard Gibbs phát triển đại số của các vectơ trong không gian ba chiều, và Arthur Cayley phát triển đại số của ma trận (đây là một đại số không giao hoán).[25]

Tài liệu tham khảo

WikiPedia: Đại số http://www.algebra.com/algebra/about/history/ http://algebrarules.com http://www.britannica.com/EBchecked/topic/428267/O... http://www.britannica.com/biography/Omar-Khayyam-P... http://query.nytimes.com/mem/archive-free/pdf?res=... http://www.usatoday.com/news/nation/2008-09-22-357... http://www.math.hawaii.edu/~lee/algebra/history.ht... http://www.math.umd.edu/~czorn/hist_algebra.pdf http://www.ams.org/mathscinet/msc/msc2010.html http://www.cambridge.org/catalogue/catalogue.asp?I...